Representation of conformal maps by rational functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal Measures for Rational Functions

We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism. 1 Introduction. In this paper we recall from U2] the...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

Compositional representation of rational functions

The rational functions are shown to coincide with the compositions of endmarkings, morphisms and inverses of injective morphisms. To represent a rational function x we need one ednmarking \xm, two morphisms au <x3 and one inverse of an injective morphism <x2 and then Resumé. — On montre que les fonctions rationnelles coïncident avec les compositions de marquages \im est un marquage terminal, <x...

متن کامل

Conformal measures for rational functions revisited

We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism. Introduction. In this paper we recall from [U2] the ...

متن کامل

Hausdorr Dimension and Conformal Dynamics Ii: Geometrically Nite Rational Maps

This paper investigates several dynamically de ned dimensions for rational maps f on the Riemann sphere, and gives a systematic development modeled on the theory for Kleinian groups. The radial Julia set is de ned and we show H: dim(Jrad(f)) = (f), the minimal dimension of an f -invariant density. The map f is geometrically nite if every critical point in the Julia set is preperiodic. In this c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2019

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-019-01023-z